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1. Introduction

It is well known that superstrings are not consistent on any background field. In the
simplest case of a closed bosonic string coupled to a curved background, the quantum
preservation of the Weyl symmetry implies that the background metric satisfies the Einstein
equations plus o/-corrections. The Weyl symmetry preservation can be seen as the absence
of ultra-violet (UV) divergences in the quantum effective action [i].

In the case of superstrings in curved background, the preservation of Weyl symmetry
at the quantum level is much more involved, although the case where only Neveu Schwarz-
Neveu Schwarz background fields are turned on is very similar to the bosonic string case [J].
Once we allow the full supersymmetric multiplet to be turned on, we need a manifestly
supersymmetric space-time sigma model in order to study the corresponding quantum
regime. The Green-Schwarz formalism provides us with a sigma model action which is
manifestly space-time supersymmetric, nevertheless, one does not manifestly preserve this
symmetry if one tries to quantize.

There exists another formalism for the superstring which does not suffer of this dis-
advantage, known as the pure spinor formalism [[J]. In this formalism the space-time
supersymmetry is manifest and the quantization is straightforward by requiring a BRST-
like symmetry. We will briefly discuss the basics of this model in section fl, now let us
mention what have been done to check the consistency of this formalism. The spectrum
of the model is equivalent to the Green-Schwarz spectrum in the light-cone gauge [A] and



it also allows to find the physical spectrum in a manifestly super-Poincaré covariant man-
ner [f]. The pure spinor formalism is suitable to describe strings in background fields with
Ramond-Ramond fields strengths turned on, as it happens on anti-de Sitter geometries.
In this case, it has been checked the classical [fi] and the quantum BRST invariance of the
model [[f] as well as its quantum conformal invariance [f, [i] (see also [P and [[]).

The superstring in the pure spinor formalism can be coupled to a generic supergravity
background field, as it was shown in [L1]], where a sigma model action was written for
the Heterotic and Type II superstrings. Here, the classical BRST invariance puts the
background fields on-shell. In the heterotic string case, the background fields satisfy the ten-
dimensional N=1 supergravity equations plus the super Yang-Mills equations in a curved
background. In the type II case, the background fields satisfy the ten-dimensional type 11
supergravity equations. Of course, it could be very interesting to obtain «o'-corrections to
these equations in this formalism by requiring the quantum preservation of some symmetries
of the classical sigma-model action. Since the lowest order in o/ BRST symmetry puts the
background fields on shell, one expects that the equations of motion for the background
fields derived from the beta function calculation are implied by the BRST symmetry. This
property was verified for the heterotic string, in whose case, the classical BRST symmetry
implies one-loop conformal invariance [[). In this paper we show that the same property
is also valid for the Type II superstring?.

In section f] we review the type II sigma-model construction of [[[I]]. In section f
we expand the action by using a covariant background field expansion. In section [ we
determine the UV divergent part of the effective action at the one-loop level and finally,
in section [, we use the expanded action of section [J, to write from the UV divergent part
found in section [, the beta functions for the Type II superstring. Then we show that
beta functions vanish after using the constraints on the background fields implied by the
classical BRST invariance of the sigma-model action?.

2. Classical BRST constraints

The pure spinor closed string action in flat space-time is defined by the superspace co-
ordinates X™ with m = 0,...,9 and the conjugate pairs (pq,0%), (Pa, 55) with (o, @) =
1,...,16. For the type ITA superstring the spinor indices « and @ have the opposite chi-
rality while for the type IIB superstring they have the same chirality. In order to define
a conformal invariant system we need to include a pair of pure spinor ghost variables
(A%, wy) and (Xa, wg). These ghosts are constrained to satisfy the pure spinor conditions
(M™A) = (meX) = 0, where 3 and 72% are the 16 x 16 symmetric ten dimensional
gamma matrices. Because of the pure spinor conditions, w and @ are defined up to
Sw = (AMY™)Am and 6% = (Ay™)A,,. The quantization of the model is performed after

!There is a more recent development [@] with an even richer world-sheet structure, called non-minimal
pure spinor formalism, which is interpreted as a critical topological string. Nevertheless, in this paper we
restrict to the so called minimal pure spinor formalism of [ﬁ]

’In a similar way, using the he hybrid formalism @], in [B] and [@] were derived the type II 4D
supergravity equations of motion in superspace by requiring superconformal invariance.



the construction of the BRST-like charges Q = § \*d,, QV =4 Xac’l“a’ here d, and Elva are
the world-sheet variables corresponding to the N = 2 D = 10 space-time supersymmetric
derivatives and are supersymmetric combinations of the space-time superspace coordinates
of conformal weights (1,0) and (0, 1) respectively. The action in flat space is a free action
involving the above fields, that is
1
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S:

/

/ iz (%axméxm + paB8” + 52087) + Syures (2.1)

where Spyre is the action for the pure spinor ghosts.

In a curved background, the pure spinor sigma model action for the type II super-
string is obtained by adding to the flat action of (R.1]) the integrated vertex operator for
supergravity massless states and then covariantizing respect to ten dimensional N = 2
super-reparameterization invariance. The result of doing this is

1
2ma!

1 — 1 = —x o = = YA~ ~ 73
S = / d*z (Enanbnab + §HAHB Bpa+ doll” + dall™ + (A*wp)Q0” + (\05)25"

+HodgP*? + (\wg)d5Co™ + (W05)d, Ca™ + (Xws) (A55) Suw™) + Spure + Sk,
(2.2)

where 114 = 8ZMEMA,ﬁA = 9ZME)\ A with Ep? the supervielbein and ZM are the
curved superspace coordinates, Bpa is the super two-form potential. The connections ap-
pears as Q.° = 0ZMQO " = ﬁAQAaﬁ and ﬁaa = aZMﬁMaE = HAQAEE. They are
independent since the action of (R.9) has two independent Lorentz symmetry transforma-
tions. One acts on the a-type indices and the other acts on the @-type indices. Spyre is
the action for the pure spinor ghosts and is the same as in the flat space case of (R.1)).

As was shown in [[L], the gravitini and the dilatini fields are described by the lowest
9-components of the superfields C,,%7 and 5537, while the Ramond-Ramond field strengths
are in the superfield P8 The dilaton is the theta independent part of the superfield ®
which defines the Fradkin-Tseytlin term

1
Spr = o /d2z r o, (2.3)

where r is the world-sheet curvature. Because of the pure spinor constraints, the superfields
in (B.3) cannot be arbitrary. In fact, it is necessary that

1 ~ =~ - 1~ _
Qao” = Qad.” + ZQAab(Wab)aﬁ, Quas” = Quds" + ZQAab(Wab)aﬁ,
- - 1 = ~ 3 ~ =z 1~ 7
Caﬁv — Cvgaﬁ + anbv(,yab)aﬁ, Caﬁv — Cv(;aﬁ + anbv(,yab)aﬁ :
¥ Z 1 z 1~ = 1 =
Saaﬁﬁ = Séaﬁéaﬁ + Zsab(ryab)aﬁéaﬁ + Zsab(ryab)aﬁéaﬁ + Esabcd(lyab)aﬁ(ryw)aﬁ- (2'4)

The action of (B) is BRST invariant if the background fields satisfy suitable con-
straints. As was shown in [[LT], these constraints imply that the background field satisfy
the type II supergravity equations. The BRST invariance is obtained by requiring that
the BRST currents jp = A“d, and ;B = Xac’i“a are conserved. Besides, the BRST charges
Q = $jp and QV =4 ;B are nilpotent and anticommute. Let us review these properties

now.



2.1 Nilpotency

As was shown in [LT]] (see also [[L7]), nilpotency is obtained after defining momentum
variables in (R.2) and then using the canonical Poisson brackets. The only momentum
variable that does not appear in (2.9) is the conjugate momentum of Z* which is defined
as Py = (2m/)6S/6(00ZM) where 8y = 3(9 + 9). It is not difficult to see that w, is the
conjugate momentum to A% and that wg is the one for 2. Nilpotence of @) determines the

constraints

XN Hoga = A NN Rog,® = AN Ryp? = 0,

ANT, 5% = NNT, 57 = XNNOT,57 = 0, (2.5)
where H = dB, the torsion T4g* and R4 375 are the tozsion and the curvature constructed
using (243" as connection. Similarly, T4 g7 and Ry B;‘S are the torsion and the curvature
using €2 AEV as connection.

The nilpotence of the BRST charge @ leads to the constraints
YoBrr . _ YayBp _ 6 _YayxBYvp _ 0 _
A% HEBA—)\ A Raﬁy = A%\ AR&BW =0,
NNT 5% = NNT 57 = XN T 57 = 0. (2.6)
Finally, the anticommutation between @ and @ determines

5 =0. (2.7)

_7_a_
=T =T yap

H af aﬁfy

5 @ 1) YayYB D
oA =T.,5 = XN Ry’ = X*NR

Note that given the decomposition (B.4) for the connections, we can respectively write
1
Rpca” = Rpeda” + ZRDCef(’Vef)aﬁa
~ — - — 1~ _
Rpca” = Rpeda” + ZRDCef(’Vef)EB- (2.8)

2.2 Holomorphicity

The holomorphicity of jg and the antiholomorphicity of ;B constraints are determined
after the use of the equations of motion derived from the action (R.J). The equation for

the pure spinor ghosts are

VA + M (d5C5°7 + M 05952°%) = 0, Vwa — (d5Ca™ + A5550a" )wg =0, (2.9)
and

VAT + N (dyC5™ + A wpS,57%) = 0, Vg — (dyCa”" + XN wpSea” )5 =0,  (2.10)

where V is a covariant derivative which acts with € or € connections according to the
index structure of the fields it is acting on. For example,

VPP = gP°P 4 PPQ. + POIOSP,



The variations respect to d, and cja provide the equations
" + dzP% 4+ X55C5% =0, 1™ — dgP™™ 4+ A*wsCo”™ = 0. (2.11)

The most difficult equations to obtain are those coming from the variation of the superspace
coordinates. Let us define 04 = §ZM Ej;4, then it is not difficult to obtain

I = 90 — o PN Eg™ EcN Oy Byt (—1) BT,
Here we can express this variation in terms of the connection €2 . In fact,
Sl = Vo — oP1C (Top? + Qpe? (—1)5C).

There is a point about our notation for the torsion that we should make clear. Using

tangent superspace indices, the torsion can be written as
TBCA = —EBN(aNECM)EMA—i—(—)BcECN(aNEBM)EMA—i—QBCA—(—)BCQCBA. (2.12)

In our notation, Tpc® will mean that the connection in (R.19) is Qcg® while Tpe®
means that the connection in (R.19) is Qcﬁa. Since we also have two connections with

bosonic tangent space index Q¢p* and ?201)“, we use Tpc® to denote the torsion when we
use the first and TVBC“ to denote the torsion when we use the second.

We vary the action (R.2) under these transformations and, after using the equations
(2.10), (B.11) and some of the nilpotence constraints, we obtain

1_,=b 1 . —

Vd, = —inan (Toba) + Hava) + §H6HG(TBQG — Hpaa) — dgTl' Toy”

~ = 1 =
—dg11*(Tuo” + §PW(TW + Hyoa))

— ~ ~ - 1~_

+>\6W7HaRaa67 + )‘ﬁwina(Raaﬁv - 5 575 (Téaa + Héaa))

~ 7 1 43 —5 U S [P
—dgIl (Ty0 + §P55H5W) + Muwy T Ry, 57 + Moyl (Rs,57 + 5C5" Hpsa)
+dpdy (P Tso” = Vo P77) + Nagds (VaCq? + C57Tpa’ + PPR.57)  (2.13)
+Xwyd5(VaCp"° = PP Ryap") = Nwy X @p(VaS 3577 +C577 Ry \5”+C5” Roag?),

and
~ 1 a0 1 a_g T 1710 E
Vdg = —§H T (T ba) + Hava) + §H I (T, + Hggo) — 4511 T

_ 1 .
—dgTl" (Tw" — Epﬁv(TWa — Hxaa))

~a ~ _ _ 1 —
NG R 5 + Mol (Raag” — 5C6™" (T, — Hi, )
—5 1 g G s = —5 1 -
_dﬁny(TTaﬁ + §P65Hﬁga) + )‘ﬁ‘WH&Réaﬁw + )‘ﬁwvH (RSaﬁv + §CBWHSPTX)

+dgdy(PPT5.T — VaP™) + Auw,ds(VaCs™ + C5PTos® — PP RyggY)  (2.14)
MB35 (VaC3™ + PPR57) = Nw N @5(VaS g5 +C37% Ry o5+ C57 Roag?).



From these equations, (2.9), (B.10) and also two equations in (R.7) we obtain the holomor-
phicity constraints. In fact, Vjp = 0 implies

Ta(ab) = Hoap = Taﬁa - Haﬁa = Taaﬁ
= Too” + PPTyn0 = AN Ras” =0, (2.15)

Rps” = C5T50a = Tra” + %P‘SBHMQ = Ry,5" + %égﬂHpaa
_ P(WTMB _ Vap/ﬁ _ Ca67 =0,
Vol +C5 T’ + PPR TS, 7 = XN (VoCy° — PP R,057) =0,
XN (VoS 3577+ C3"7 Ry 5"+ C57 Roap”) = 0, (2.16)

and VEB = 0 implies

Ts(ab) = Haap = Taﬁa + Haﬁa =T&" =T&" — pﬁiTTaa - XEXBEGEEV =0,

1 35 1., .5
:TW6+§P66H_ :RSaﬁy"‘iCBwH‘

3
Roap” — C3"°T5 =35 Soa

daa
— PPT T — VPP + Cy7° =0,
VaCp™ + Cg T’ — PP Ryap” — Sga™® = XA (VaC5™ + PPR_57) =0,
NN (VS5 + CsP R 57 + C57% Roms”) = 0. (2.17)
2.3 Solving the Bianchi identities

We can gauge-fix some of the torsion components and determine others through the use of
Bianchi identities. It is not necessary but it will simplify the computation of the one-loop
beta functions. As in [[d]], we can set Hogy = Hogy = H, oy = HEB7 = 0 since there is
no such ten-dimensional superfields satisfying the constrains of (.18) and (R.17). We can
use the Lorentz rotations to gauge fix T,5* = ’ygﬁ and Taga = 'ygﬁ, therefore the above

constraints imply Hag, = (Va)ap and HaBa = _('Ya)aﬁ- We can use the shift symmetry of

the action (P.2)
ddo = 005" Nw,,  0da =005\ Gy, 6C.T=PT005.7,  6Cs7 =-P150;,7,
5 _ DS 0 | 0
08,57 = Ca P00 50 + C57°00,07,

to gauge-fix T,57 = T537 = 0.
The Bianchi identity for the torsion is

(VT)apc” = ViaToe)” + Tiap"Tec)” — Rasa” =0, (2.18)

where brackets in (R.18) mean (anti-)symmetrization respect to the ABC indices. The
curvature will be R or R if the upper index D is § or § respectively. When D = d, we use
the notation (VT')pc? or (VT)ABCd, if we use the connection Qg.* or QBC‘I; then the
curvatures in each case will be R or R.

The Bianchi identity (VT)a3,% = 0 implies Tpqp = 2(Yap) o Q3. Similarly, the Bianchi

identity (Vf)aﬁwa = 0 implies Taap = 2(Yap)a” QE' The Bianchi identity (VT)aBWG =0



implies O, = Thab = 0. Similarly, the Bianchi identity (VT)gg,* = 0 implies Qm = Taob =
0. It is not difficult to show that the constraints T,,* = Tyg® = 0 imply Q, = ﬁa =0.

We can write two sets of Bianchi identities for H depending on what is the connection
we choose in the covariant derivative. Note that the components of the superfield H do
not depend on such choice. The Bianchi identities come from VH = 0 and VH =0 and it
is not difficult to check that both sets are equivalent. Let us write only one of them

3
(VH)apcp = ViaHpep) + §T[ABEHECD} = 0. (2.19)
There is one more Bianchi identity involving a derivative of the curvature
(VR)acp” = VRupcp” + Tiap” Rrcip” = 0. (2.20)

The identities (VH)agys, (VH) 5.5 (VH) \ 525 (VH) 55, (VH ) 555 are easily satis-
fied if we recall the identities for gamma matrices (5 (Ya)y)s = 7?&3(%)7)5 = 0. The iden-
tities (VH)aa8y, (VH)aas7, (VH)WEW’ (VH)qapy are satisfied after using the dimension-
% constraints. The identity (VH)qas = 0 implies Tope + Hope = 0 and the identity
(VH)abaE = 0 implies Typ — Hape = 0. The identity (VH)abaE = 0 is satisfied if we

use the constraints involving the superfield P2 in the first lines of (.13) and (2.17).

2.4 The remaining equation of motion

In the computation of the one-loop beta function we will need to know the equation of
motion for II% and ", Since we know that the difference VII" — VII® is given by the
torsion components, then we only need to determine VII" 4+ VII® which is determined by
the varying the action respect to 0% = §Z™ Ep;®. To make life simpler we will write this
equation using the above results for torsion and H components. The equation turns out
to be

%(%ﬁa +VIL,) = %Hbﬁchba - %Haﬁbwa 4 AT T® + AwsTl Rapo”

Fdx 1T (T, + %PﬁaTﬁab) + AT (Rass” + %CN‘EB“/TW,)

—{—%é%ﬂﬁ T.5" + %X%EH’YEME

—I%daﬁETaBa + %A%Bﬁ%@aﬁ + dadgVaP + Xwgds(VoCo™ — P77 Rys0”)

A5 (VaCa™ + PP R 527) + XwsN@5(VaSar™ — C5% Ropa” — Co R (2.21)
2.5 Ghost number conservation

As it was shown in [[L1]], the vanishing of the ghost number anomaly determines that the
spinorial derivatives of the dilaton superfield ® are proportional to the connection 2. This
relation is crucial to cancel the beta function in heterotic string case [[2] and will be equally
essential in our computation. Let us recall how this relation is obtained. Consider the
coupling between ghost number currents and the connections in the action (2.3). Namely

1
2ma/

/d% (JQ+ Q).



The BRST variation on this term contains the term

1 _ -

—5— [ &2 (0IX*Qa + DTN ).
T

The anomaly in the ghost number current conservation turns out to be proportional to the

two dimensional Ricci scalar, as noted by dimensional grounds. The proportionality can

be determined by performing a Weyl transformation, around the flat world-sheet, of the

anomaly equation. In this way, the triple-pole in the OPE between the current and the

corresponding stress tensor yields
Vo =49, Vad = 4Qg, (2.22)

which will be used in section fj to cancel the UV divergent part of the effective action.

3. Covariant background field expansion

We use the method explained in [[§ and [[2]. Here, we need to define a straight-line
geodesic which joins a point in superspace to neighbor ones and allows us to perform an
expansion in superspace. It is given by Y4 which satisfies the geodesic equation AY 4 =
YBV Y4 = 0. The connection we choose to define this covariant derivative has the non-
vanishing components Q4,7 Q4.” and Q Aag. These same connections are defined in the
action (R.4). In this way, the covariant expansions of the different objects in (R.2) are
determined by

ATTA = VYA —VBICT 54, AQLS = YA Rpan®, AQS” = —YATIBRpas”.
(3.1)
Any superfield U is expanded as AW = YAV 4.
As in 1], we see that dg, glva and the pure spinor ghosts are treated as fundamental
fields, then we expand them according to

do = dao + day A" = A+ A, Wa = Wao + Pas
~ ~ ~ ~a

dg =dgo +dw, N =XT+X, Fg= a0+ a (3.2)

where the subindex 0 means the background value of the corresponding field which will
dropped in the subsequent discussion.

The quadratic part of the expansion of (B-9), excluding the Fradkin-Tseytlin term, has
the form

1 _ _ ~ _
S2=Sp+ 5 /d2z (YAYPERs + YAVYBCpA + YAVYBCpa 4 dyYAD 2™
~ _ ~ _ = = ~ —
+dgY DA% + (NG ) Ho’ + (A @) Ha” + (\wg + ADp)Y T as”
~o ~~ - A — —~ =~ -
+(A G5+ X))V Lag” + dadg P + (N ws + A*0p)d7Co™

o ~~ o~ o~ = —~ =7 ~~ —
+(A @5+ \05)dyCa™ + (\ws + A*Dp) (A Ty + N wg)Say™), (3.3)



where Epa,Cpa,... are background superfields given by
1_c=D
Epa = ZHCH (Tes”Hppa(—1)P ) — TppPHpea(—1)P¢

+VHpea(—1)PCP) 4 2705 Tp e (—1)PETB))
1_a=C
—ZH( II )(RCBAa - TCBDTDAa + VBTCAa(_l)BC)

1 —c
+5dall (—)*B(—Repa® + TepPTpa® — VeTea®(—1)P9)
1~ _ _ _
+§daHC(—1)A+B(—RCBAa +TepPTpa™ — VTea®(—1)59)

1., =c
+5 A Wl (Te”Rpas” — VRoao” (1))

1ee = = 1. ~ -
+§)\QWEHC(TCBDRDA56 — VRoas" (—1)P9) + §dadﬁvaAPaﬁ

1 ~ — 1~ ~ 3
+§A%ﬁd7vaAcﬂ(—1)A+B + iA%gdvavAcaﬁw—m“B

1 - _
+5A WAV 5V A5,
1 a 1 C a 1 A 1 « A+B
Cga = _ZH TpaAq — §H TCAQ(SB - ZH Hepa — §daTBA (_1)
1
—iAawﬁRBAag,
_ 1 l—c 1 le= &
Cpa = _ZHbTBAa - 511 Toaadp + ZHAHCBA - §daTBAa(_1)A+B
1~_~ —~ —
- 5 )\QWERBAHB7

Da® = " Tpa® + &gV aPP (1) + NV al5e,
DA% = ~T1PTp,s™ — dgV aPP (—1)* + Nw,V4Cs"7,
Ho? = 00 + d5Co TN 555057,

Hy = 07° + d,C5" + NwsS 5",

Tao? = T Rpan® + d5V aCT (—1)* + N5V 45057,
Lia” = ~IPRpaa® + d, V40" (1) + NwsV 48,5,

In (B.3) Sp provides the propagators for the quantum fields and is given by

1

2ma/

1 _ —~_ ~ _
» / d*z (VY VYo + daVY™ +daVY™) + Lyure,

where L,yre is the Lagrangian for the pure spinor ghosts.

4. The one-loop UV divergent part of the effective action

The effective action is given by

efseff :/DQ 6757

(3.4)

(3.5)

«
=)

© o0
—_ — T D D — T

(=)

\V)

(3.13)

(4.1)



where Q represents the quantum fluctuations.

To compute the one-loop beta functions we need to expand (R.3) up to second order
in the quantum fields. In this way, we will obtain the UV divergent part of the effective
action, Sx. Here A is UV scale. Note that the Fradkin-Tseytlin term is evaluated on a
sphere with metric Adzdz. Finally, the complete UV divergent part of the effective action
becomes

Sh + % /d2z (VﬁAVA(I) + ﬁAHBVBVA‘I)) log A. (4.2)

The computation of Sy is performed by contracting the quantum fields. From (B.13)
we read

Yz, 2) Y (w,w) — —a/n®log|z — w|?,

a'é,p = 3 o/ég

da(2)Y (w) = ==, da(m)Y7 (@) =

(4.3)

(z —w)
For the pure spinor ghosts we note that, because of (B-4), they enter in the combinations

1 ~ 1~ o~ ~
Neb = 5()\7“%1), J =\, N®= §(A7abw), J = \wg.

We can expand each of these combinations as J + J; + Jo, similarly for J , N and N,
As in [[I7], the only relevant OPE’s involving the pure spinor ghosts and contributing to
S are

N (2)NT(w) — (=N (w) + "N (w)), (4.4)

(z — w)

NN () = s (R )+ ), (4.5)

The one-loop contributions to Sy come from self-contraction of Y4’s in the term with
FEpain (B-]) and a series of double contractions in (B.3). These come from products between
the term involving Cp4 with the one involving C'ga, Cpa with EAE, Cpa with D4, EAE
with DA®, Ega with P8, Too® with Co7, Ioa? with C5P7 and Sus™ with itself. After
adding up all these contributions, the one-loop UV divergent part of the effective action is

proportional to
/ d*z [_nabEba +na[cnd]bcba€dc + nabC[aa] Eba +77ab6[aa] Dba_{'ﬁaﬁDﬁa_" E[aﬁ] poP (46)
_ L ~ 1 - _ _
AN T Cos” + N Lo Cos™ + 5N NS ! Speay + VIV 40+ T TPV 5V 4] log A,
where we used the expressions (P-4).

Now it will be shown that (f.f) vanishes as consequence of the classical BRST con-
straints.

,10,



5. One-loop conformal invariance

. . . c . . —=A
To write the equations derived from the vanishing of ([.f]), we need to determine VII
from the classical equations of motion from (2.9). In order to do this, we need to know

VA — VI = TP T (5.1)
Note that we are using here the connection Q4% to calculate the covariant derivatives and
the torsion components.
The equation for VII, is
Vﬁa = HbﬁcTabc — HaﬁbTaab + ggHbTaba + daﬁbTaba + Xa&v)anbéabaﬁ + )\awﬁﬁbRabaﬁ
+d 11T, + NG5 Roys® + dad5Va P + Xwsds(VaCoT — P Rys0”)
AN T5d (VaCa"" + PYR 5.+ X w N @5(VaSaz™ — O Rape” — Co P R
(5.2)

Now we compute the equation for II". We start by noting that this world-sheet field is
determined from the equation of motion (R.11), then

VII" = —V(dzP*" + N5 C57™).

Remember that the covariant derivative on P®? and CN'EBV acts with 2,° on a-indices

and with Oz° on a-indices. Now we can use the equations (B-10) and (R-14) to obtain

VIT® = dgds(Cs7P P + PPVSPT) 4 Mo ds(— S5, PO + C5 PV 5P
—d511°V, PP — 45TV, PP 4 NGds (O3 C® — G0 C57 — P55
—PY(V5C57 + PP¥Rss™) + Mw, X058 5577 5P — S5 PC57 + C5"7 Vs
+P(VeS 55" + C " R 57 + O57 Ryeg™)) — Nosl1%(VoCy 7 + R, 557 P2?)

~N5-I108 et (5.3)
To obtain the equation for " we can use (b-1)). After all this we get
VIT® = dgds(CsT P — POV PO%) 4 Nisds(S 527 PP — O30V, PO%) (5.4)
+dgTT*V PP 4 dgTD V5 PP 4 M, ds(C3?°C, 7™ — C,0° CP™ + PPV O3
+PU (V5057 — PORes")) + Nuwy Ni5(S 5577 Co % — 8 5P C7 + C5P7V,C57°
+PO(VeS 5P + C5 R s” + C57 Ryzs")) — Nw I (VaC™ — Raes? P)
N, T Sg + T T,," — IPTT,5° — 511 PP T, — NPGsI1C5 0 T
5.1 Beta functions

Now we can obtain the equations for the background fields implied by the vanishing of the
beta functions. These are the background dependent expressions for the conformal weights

— 11 —



(1,1) independent couplings in (f.6). That is, all the independent combinations formed
from the products between (1I*,I1%,dn, A*wg) and (Tr*, ", cja, Xaﬁﬁ) because IT* and T
are determined from the equations of motion (R.I1)). Let us first concentrate on the beta
functions coming from the couplings to HAﬁB, daﬁB and HAC% fields. After using the

results for the expansion (B.4)-(B.13) and the equations (p.2)-(B-4) in (B.6), the couplings
Haﬁﬁ, Haﬁb, [°TT° and TI°TT lead respectively to a first set of equations

TCE‘;TMC - chfT@c +4V, V5P = 0, (5.5)
vdjjozdb + ]:Eozdebnde + TbcéTéac + 4va04(I> = 07 (56)
RBdeande + TacéT%c _ Tcﬁ5T5ac + 4Vavﬁ<1> =0, (5.7)
nCd(Racdb + Rbcda) — VTape + Tc(aaTb)ac + 8TaaﬁTbﬁa
FAT VP + AT, " Va® + 4V, V, @ = 0. (5.8)

We wrote them by increasing their dimensions, that is, if X* has dimension —1 and each

o<, 6 have dimension —%, then the first has dimension 1, the second and third dimension %

and the fourth dimension 2. The couplings to daﬁﬁ , Haglvg, daﬁb and H“c% lead respectively
to a second set of equations

VT 5% = 2V5PYV5® 4 2P V3V5® = 0, (5.9)

VT, + 2V, PPV, & — 2PV, V& =0, (5.10)

VT® — Toa®Tp + (T5pTir® — Ris®) P77 + Ti? (3V5PYT — 2PTV 5)

+2T. VP — 2V, P V=P = 0, (5.11)

VT = 2T T, + PPT, % Ty + R, 5P — T, (3V5P77 — 2P V;50)

2T,V + 2V, PPV & = 0. (5.12)
The first two have dimension 2 and the second two have dimension 2. Now we will

2
prove that these equations are implied by the classical BRST constraints, the Bianchi

identities (R.1§) and the relations (2.29).
Firstly, it is important to know the expression for the scale curvature in terms of the
scale connection. This are found to be

Rap = Vs, Ry5=Vg, R5=0,

«,

Ry, =Tw"Qy. Rep=VaQs Rg5=T5Q,. (5.13)

R5=V@Q;, R5=VaQ5 Ras=0,

Ry =T Qs Ry5=VaQ5 Rep =T, 05 (5.14)

a8 —

Secondly, let us write some expressions useful for later use. We note that the Bianchi
identity (VT)aqC = 0, using (5.13) can be written as

Ra[ab]c = VaTlupe — Q(PYC[@)@&Rb}ﬁ + (’Yc)aBTabﬁ - adcTabd - Ta[adTb]dw (515)

- 12 —



now, we can use the identity
2Raabe = Ra[ab]c + Ra[ca]b - Roc[bc]m (516)
and the Bianchi identity (VH)aape = 0 to write (p.17) as

Raabc = Ta[bﬁ ('Yc])ﬁoz - 2(7bc)aﬁRaB- (5'17)

An identical procedure starting with (Vf)aabc = 0 allows us to find

E&abc = a[bﬁ ('Yc])aﬁ - 2(7bc)EﬁRa§- (5'18)
Then, replacing (B.17) and (5.18) respectively in (VT )aa5” = 0 and (VT) aaﬁa = 0, we find
Yo5Tha” = 8Raa,  A2sTha” = 8R.a. (5.19)

We have enough information to show that the equations (F.5), (5.6) and (F.7) are
satisfied. From the Bianchi identity (V7T'),s+" = 0 we obtain

1
TosTin® = 1TR o7 + Z11::wcd(7“1)oﬁ. (5.20)
Since we need an expression for Rsg.q, we can use (V1) aﬁab = 0, finding

Reged = 2(Yea) 3° Vs + Tem (Ya)ep + Tep (a)er- (5.21)

Replacing (5.21)) in (5.20) ,using the second equation in (5.13), Vo® = 4Q, and the
constraints coming from holomorphicity-antiholomorphicity of the BRST current 7,37 =
—(Va) s P77, T3 = (VG)EPVS we can verify the equation (f.5).

To verify (b.6) and (F.7), we must contract the a and b indices using 7% in (5.17) and
(B-19), and use (F.19) together with the relations (P.23).

For deriving the remaining equation of the first set, the coupling to Haﬁb, it is useful
to find an expression for Rgp.q, which can be found from the Bianchi identity (VT)abaﬁ

I . _
Rapea = _g(’)/cd)ﬁ (vaTabﬁ - Ta[a Tb}eﬁ - Ta[a,yTbWﬁ% (522)

from this equation we construct nCd(Racdb + Rpeda):

1
1°YRacap + Rocda) = —gnCd[(’mb)ﬁavaTaCﬁ + (Yda) 8" VaTh"]

1
+§77€d[(7db)ﬁ“Ta[aeTc]eﬁ + (Yaa) 8" Tapp T

1 C [e € [0 €
+30 Uvab) 8" T Toge” + (Vaa) " Tap Tuge”)- (5.23)

Let us consider the right hand side of (5.23) line by line. We can use (5.19), the Bianchi
identity (VR)qaasg” to write

(%)°*VaRes = =2V, Vp® — 2700 Vo ® — 2(70e) P QU R — (o) 5’ PP Res,  (5.24)
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and the beta function with dimension 1 (f.§) to find the following expression for the first
line in the right hand side of (f.23)

_4vbvaq)+2TavaC(I)_477ab(76)6696R66+4(’7b)6BQBRa6+4(’7a)6ﬁQBRb6+inabUCchﬁéng-

(5.25)
Finding an expression for the second line is a matter of gamma matrices algebra, once we
use (b.13) . For this line we find 19, T3cqT°% — %Tc(aﬁTb)ﬁc. Using To57 = —(Va) s P®7 and
some gamma matrices algebra, it is straightforward to find Tﬁ(avaWb — %naande57T075
for the third line. So, adding the results for the three lines and using (p.19) we find

HCd(Racdb + Rbcda) = —4V,)V, P — Tc(aﬁTb)ﬁc + QTGbEvK) + Tﬁ(ava)Wﬁa (526)

which contains some of the terms in (F.§) . It is also needed to use (VT)q.¢ = 0 in order
to generate the term VT ;.. This Bianchi identity gives

VT ape — Tc[aeTb]ec - Tc[aETb}ec - nCd(Racdb - Rbcda) =0. (527)

Finding an expression for UCd(Racdb — Rpedq) is not difficult following the description given
to compute (5.26) . After we compute it and replace it in (5.27) we find

VTabe + Toia Ty — 2Tap"Ve® + 2T Vo ® — 2T, 7V5® = 0. (5.28)

Combining (5.2§) and (f.2§) gives the desired beta function equation (f.§).
A similar procedure, but with more steps, is performed to prove the equations of the
second group. To probe (f.9) one can start by computing {Vg, VE}PW = —V%BVCPW +

ﬁamEP“fg. Then we split the curvature as a scale curvature plus a Lorentz curvature. For
the latter, use (VT)aﬁcd = 0 to obtain
R5.4(v D)5 = =180VaQs + (v)5"VgTaea + 1615 Taca + (V7 )5aTecar  (5:29)

so on one hand we will have

_ - — . — 1 _ . —
{Va, Vgt P = VT + RzP?° — 45V P + Z(wcd)gﬁvg meaP??

oo

~ ~ - 1 - _
~AT5ed T3P + 2 (7" Vg TeeaP”’. (5:30)

On the other hand, we can use Vg PP = C578, 07 = —PVSQS and C,q) = 1/10(7“)“/0‘}?(1&66;,
which come from antiholomorphicity of the BRST current, to write

3 30 5 O 1 a\yo 5 cdy B
{Va, Vgt PP = —17VaP 05 — 1TP° Va5 + 100"V 5(Racaly HP). (5.31)
Using (Vf)abcd =0 and (%H abed = 0 it is straightforward to find

(Y")* Raacd = 10T2q" — 10P  Trey. (5.32)
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Since there is a derivative acting on this terms in (f.31)) , we make use of (VT)ECdV =0 to
find B ~
(VN VaTed! = —18VTim" + (v ) g5 Teca P’ + 16T5eaTac” (5.33)

We can now replace the last two equations in (p.31)) and equate it to (p.1) . The identity
(V") &" (Yab)7)® = —106(5755)° + 8(7*)ax(7a) ™, (5.34)

which can be proved using (7“)(53(707)3 = 0, will be of help to find (5.9). A completely
analog procedure allows us to arrive to (p.1().

To prove (B.1]) we make use of the Bianchi identities (VR)aapg” = 0, (VT )eap” = 0
and the identity (7,)*’Rag,? = —2(7a)*’Ryap’, which follows from (V1),s,% = 0, to

arrive to
(W)Gﬁ(vaRabﬁ,y - 2T’o¢[aeRb]eﬁ,y - Ta[aERb]Eﬁ’y) — 8T " Toe + 8V Ty + 2T,V ®
1 _
_5(7)a6 (VCd)EvRaﬁchabe + Tabg(’ya)aﬁREaﬁ,y =0. (535)
The last term in this equation is zero as can easily seen using (V71 ')eng” = 0. The first
term can be worked out using (5.29) and (VT')e3” = 0, the curvature in the first term of
the second line can be rewritten using (V7)as." = 0. The use of (VT)ear? = 0 will be also
needed to generate (b.11)). Again, an analog procedure will allow at arrive to (5.19).
So far, we concentrated on a specific set of beta functions. The remaining ones can

be classified in a third and fourth sets. The third set involves first order derivatives of the

curvatures. We present it again as the dimension increases. B B
At dimension 5/2 we find respectively from the couplings to Ji’ ) Ie.J, , N aeTi” and

e e
VR 5+ V(eRg s P +2(V5C™ — Ry P"™)Va® + 20%VgV50 = 0, (5.36)
VP Ry — V(5Raye P + 2(VoCP + Romy PP\ V3 + 20PV 5V, @ = 0, (5.37)
VR e + V(eRa5y0c P+ 2(V5C0c" = R P7) Ve + 20, V5V 5@ = 0, (5.38)
V9 Raabe — V(s Raype P + 2(VaCi' + R 5, P°) V@ +2C3. 'V, Vo ® = 0. (5.39)
Whi~le at dimension 3 we find respectively from the couplings to Jﬁb, Ie.J, , N acTp’ and
e Nbe

VRap — Tpa R + Toa" Ry + 3Ti5°VaC7 + 2Ry VO + 2Ryg PV, ®

+2(VyC — Ry, PY*)Va® + P (VeRs, + ThsRee + Ti' Rs) = 0, (5.40)
VP Ryq + Tay R'5 + TopeCOT5" + 310, V5C7 + 2Ry V'® — 2R, PPV 50
+2(VaC? + Ry PPV 5® — PP(VsReq 4 Tyo  Rec + Tas) Rey) = 0, (5.41)

vdRclbac - deeRdeac + deERdEac + 3Tb5fyv’YCacg + 2Rbdacvdq) + 2Rb§acP€gveq)
+2(vbcacé o Rbmcpas)vgq) + 2]:€bgeacfce(S + P(SE(VERébac + TbéfREfac + TbE’yR&Yac) - 07
(5.42)
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V9 Raabe + To® Raepe + TadfébceTedf + 3T5VeCe® + 2Raane VE® — 2R 15, PV
+2(vacbcé + RaEbcpég)v(gq) + 2]:€a56bcfce5 - P(SE(VJREabc + Ta(SfEE fbe + Taéiéabc) =0.
(5.43)

The fourth set involves second order derivatives of the background fields PO‘B, C,7,

CN'EB“/ and S aﬁﬁ' There is an equation at dimension 3, coming from the coupling to dac%
VPP opg 0B 4 Ty TP 9w PPV PO - 2V, PPVCS
—2(PPVsP 4 POVPIOV & + 2(PTIVs PP + PPVsPT)VSd = 0. (5.44)
At dimension 7/2 we find respectively from the couplings to J c%, daj , N “célvﬁ and daﬁ be
V2CP — POV, V5 CP — T, PR™ + 2R,V , P 4 2V5PPV ,C7 — C Rysc” P
+PYO(V.R,® — VisReo PY) = 2(V,CP — PPR,,)V*® — 2(P*PV,C7 + PV, CF
+PP R PYT)V0 + 2(SPP + %§cd(fycd)fpag ~ OTV5PP)V,8 =0, (5.45)
V20 — POV V40 — Ty® RY — 2R5PV, PYT — 2V5CPV 3 POT + CF R P*
— PNV R5 + VisRo5P") — 2(V,C® + PV Ry VP ® + 2(P*V5CY + PPV 5Ce
+P*RexP )V, & — 2(SP + iscd(ycd)eapﬁﬁ ~ ", PP)V50 =0, (5.46)
V2Coc” = PPV 5V Cac” — Racac T’ = 2R 4eac V' PP + 2V PV Coe® — Cot Ris” P
~ PPV Rygac — VisRepac P + 2R 55,,Cc%) + 2V5Ce, O
~2ViCud = PPRiae) V1@ = 2ACaT V5P = 80P 4 Sama M) 7PV,
—2(PPV,Cu’ + PV, Cot”? — PPReyye PP V50 = 0, (5.47)
V2Ch — PPV 15V Che® — Raete T + 2Ry VP — 2V5C3, VP + Gy Ryes® P
—Paﬁ(vdﬁdgbc—v[éﬁa— P%42Rz;, Ce)+2V5C0Ce —2(VyCoe® + PP R 5, ) V0

Bbe
~ _ - _ 1 _
+2(Coe’ Vs P™T = 5o P*T = £ Suthe(7*)s* P7T) V50
+2(PPV5Ch° + PPV5C + PO Regye PT) V5@ = 0. (5.48)

Finally, at dimension 4 we find from the couplings to J J. , J N @ N abJ and NobN<d
respectively

V28 — PPV 5V S — R Ry + 2R 5VCP + 2R3V CP — 2VzC0PV 50
—CH(V*Rap — P*VsRq5) — CP(VOR 5 — P*VsRy5) + 2(C° Ry + C"Ry) V' D
—2(CV5CP + PP¥(V5S 4 OV Rog + OV Ryg))V5® — 2(COVoCP — PP (Y,
+C7Rsq + C7Rya))V3® = 0, (5.49)
V280c = PPV(5VgSuc — B Regac + 2Ry5, V' C° + 2Ry5 V" Co’

~2V5C0’ V507 — 2V585,Cc%
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—CY (V'R 5, — PPV sRyp + 2R55,,Cc) — Cac (V! Rag — PV 5Re)g)

+2(Cac” Rag + CPR 5, ) V'@ — 2C°V5Co Vo ® + 450, C7 V., @

20,V 307V =0, (5.50)
VQSab — P‘%V[(;Vg] Sap — ECdRcdab + QRC(;abVCC“S + Zﬁcgvc(]abg

—2V5COV5C07 — 2V55:,Cy?

~C" (V' Rarab — P*V(sRefpap + 2R 5,,Co%) — Ca? (V' Ry — PV 5 Rep5)

+2(C7 Ryap + Cap Rasap) VI® — 204 V0OV 5® + 48,.C, V5

—207V,C’ V5@ = 0, (5.51)
V2Sabed — PV (5Ve Sabed — B caRefab + 2R fecaV! Cab® + 2R peat VI Cegf
—2VeCod "V, Cop® + 2VeSa1eaCh’® + 2V SapeaCa’

- abg(veéegcd - P(Wv[(gﬁﬂgcd + 2E€5ecéd65) - écde(veReeab
_P(Wv[&Rﬂeab)+2(achReeab+CabEReEcd)ve(I)_2Cab7v75cd5veq)+4Sabcf5df€veq)
—QGCdWVVCabEVg‘@ + 4SafchbeVeb<1> = 0. (5.52)

Since the Bianchi identities allow to write the curvature components in terms of the
torsion components, we expect that the beta functions of the third set will be implied by
the eight beta functions already proven, i.e first and second set. In the same way we expect
that the beta functions of the fourth set will also be implied by the first two sets of beta
functions since the constraints coming from holomorphicity and antiholomorphicity of the
BRST current allows to relate the background fields to some components of the torsion.
This is not too hard to check in the case of lower dimension, for example, at dimension 5/2

consider the beta functions coming from the coupling to Ji’
V'R, + V(eRz,P* + 2(V50® — Rz P"*)Va® + 2C*V5V50 = 0. (5.53)

By using R 5 = TaBPYQV and Rgs = VEQ(g, which follow from the definition of the curvature,

and CP = PO‘BQQ, which follows from the antiholomorphicity constraints, we find that
(b.53) can be written as

(VT 5% = 2VgPYTV5® + 2PV V50)Q, = 0, (5.54)

so, the beta function (5.9) with dimension 2 implies (f.53) . Similarly we checked that
(6.10) implies (5.37) and that the beta functions with dimension 5/2 (b.11) and (5.13)
imply respectively the beta functions with dimension 3 (5.40) and (5.41) .

We have not found proofs for the vanishing of the remaining beta functions, since this
task becomes clumsy as the dimension increases. Nevertheless, given the above explanation,
we consider our work sufficient to assure that the beta functions vanish as a consequence
of the classical BRST symmetry of the action for the Type II superstring in a generic
supergravity background.
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